Fault-tolerant nanoscale architecture based on linear threshold gates with redundancy

نویسندگان

  • Nivard Aymerich
  • Antonio Rubio
چکیده

One of the main objectives of the data computing and memory industry is to keep and ever accelerate the increase of component density reached in nowadays integrated circuits in future technologies based on ultimate CMOS and new emerging research devices. The worldwide-accepted predictions with these technologies indicate a remarkable reduction of the components quality, because of the manufacturing process complexity and the erratic behavior of devices, causing a drop in the system reliability if we maintain the same design rules than today. Together with the introduction of new devices, new architectural design paradigms have to be included. Fault tolerant techniques are considered necessary and relevant in this scenario. In this paper we present a Fault-Tolerant Nanoscale architecture based on the implementation of logic systems with averaging cells linear threshold gates (AC-LTG). The sensitivity of the gates in relation with manufacturing and environment deviation is investigated and compared with the well known NAND multiplexing concept, showing that the AC-LTG is a valuable alternative in specific nanoscale conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Novel efficient fault-tolerant full-adder for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...

متن کامل

Fault Diagnosis and Fault-Tolerant SVPWM Technique of Six-phase Converter under Open-Switch Fault

In this paper, a new open-switch fault diagnosis method is proposed for the six-phase AC-DC converter based on the difference between the phase current and the corresponding reference using an adaptive threshold. The open-switch faults are detected without any additional equipment and complicated calculations, since the proposed fault detection method is integrated with the controller required ...

متن کامل

Can large fanin circuits perform reliable computations in the presence of faults?

For ordinary circuits with a xed upper bound on the fanin of its gates it has been shown that logarithmic redundancy is necessary and suucient to overcome random hardware faults (noise). Here, we consider the same question for unbounded fanin circuits which in the fault-free case can compute Boolean functions in sublogarithmic depth. Now the details of the fault model become more important. One...

متن کامل

Can Large Fanin Circuits Perform Reliable Computations in the Presence of Noise ?

For ordinary circuits with a xed upper bound on the maximal fanin of gates it has been shown that logarithmic redundancy is necessary and suucient to overcome random hardware faults. Here, we consider the same question for unbounded fanin circuits that in the noiseless case can compute Boolean functions in sublogarithmic depth. In this case the details of the fault model become more important. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microprocessors and Microsystems - Embedded Hardware Design

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012